Ground states of nonlocal scalar field equations with Trudinger-Moser critical nonlinearity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ground States for Fractional Kirchhoff Equations with Critical Nonlinearity in Low Dimension

We study the existence of ground states to a nonlinear fractional Kirchhoff equation with an external potential V . Under suitable assumptions on V , using the monotonicity trick and the profile decomposition, we prove the existence of ground states. In particular, the nonlinearity does not satisfy the Ambrosetti-Rabinowitz type condition or monotonicity assumptions.

متن کامل

A Hardy–Moser–Trudinger inequality

In this paper we obtain an inequality on the unit disk B in R2, which improves the classical Moser-Trudinger inequality and the classical Hardy inequality at the same time. Namely, there exists a constant C0 > 0 such that ∫ B e 4πu2 H(u) dx ≤ C0 <∞, ∀ u ∈ C 0 (B), where H(u) := ∫

متن کامل

Sharp Form for Improved Moser-trudinger Inequality

S2 (|∇u| + 2u)}, and the equality holds if and only if eg is a metric of constant curvature. In the study of deforming metrics and prescribing curvatures on S, this inequality is often used to control the size and behavior of a new metric eg0 near a concentration point. With certain “balance” condition on the metric one would guess that if the metric concentrates, it should concentrate at more ...

متن کامل

On a Multi-particle Moser-trudinger Inequality

We verify a conjecture of Gillet-Soulé. We prove that the determinant of the Laplacian on a line bundle over CP is always bounded from above. This can also be viewed as a multi-particle generalization of the Moser-Trudinger Inequality. Furthermore, we conjecture that this functional achieves its maximum at the canonical metric. We give some evidence for this conjecture, as well as links to othe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topological Methods in Nonlinear Analysis

سال: 2016

ISSN: 1230-3429

DOI: 10.12775/tmna.2016.045